如何在 Linux 上获取 CUDA 核心数如何在 Linux 上获取 CUDA 核心数如何在 Linux 上获取 CUDA 核心数如何在 Linux 上获取 CUDA 核心数
  • 业务
  • 目标
  • 支持
  • 登录
找到的结果: {phrase} (显示: {results_count} 共: {results_count_total})
显示: {results_count} 共: {results_count_total}

加载更多搜索结果...

搜索范围
模糊匹配
搜索标题
搜索内容

如何在 Linux 上获取 CUDA 核心数

发表 admin at 2025年2月28日
类别
  • 未分类
标签

在本文中,您将了解如何在 Linux 上获取 CUDA 核心数。作为文本主题,我们将获得 NVIDIA GeForce RTX 3080 上的 CUDA 核心数量。

在本教程中您将学习:

  • 如何使用 NVIDIA 驱动程序获取 CUDA 核心数

  • 如何使用 NVIDIA CUDA 工具包获取 CUDA 核心数

NVIDIA RTX 3080 CUDA 核心数

如何使用 NVIDIA 驱动程序在 Linux 上获取 CUDA 核心数

  1. 第一步是为您的 NVIDIA 显卡安装合适的驱动程序。为此,请遵循我们的 NVIDIA 驱动程序安装指南之一。

  2. 准备好后,只需使用以下命令选项执行 nvidia-settings 命令即可。例如,这里是我们的 NVIDIA RTX 3080 GPU 的 CUDA 核心数:

    $ nvidia-settings -q CUDACores -t
    8704
    8704
    

如何使用 NVIDIA 驱动程序在 Linux 上获取 CUDA 核心数

    1. 乌班图 20.04:

      $ wget https://developer.download.nvidia.com/compute/cuda/repos/ubunt4/x86_64/cuda-ubunt4.pin$ sudo mv cuda-ubunt4.pin /etc/apt/preferences.d/cuda-repository-pin-600$ sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubunt4/x86_64/7fa2af80.pub$ sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubunt4/x86_64/ /"$ sudo apt-get update$ sudo apt-get -y install cuda

      Debian 10:

      # apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/debian10/x86_64/7fa2af80.pub# add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/debian10/x86_64/ /"# add-apt-repository contrib# apt-get update# apt-get -y install cuda

      RHEL 8/CentOS 8:

      $ sudo dnf config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo$ sudo dnf clean all$ sudo dnf -y module install nvidia-driver:latest-dkms$ sudo dnf -y install cuda
    2. 作为 CUDA 工具包安装的一部分,找到其 deviceQuery 目录。

      $ locate deviceQuery
      

      上述命令应返回类似于以下内容的输出:

      $ locate deviceQuery
      /usr/local/cuda-11.4/extras/demo_suite/deviceQuery
      /usr/local/cuda-11.4/samples/1_Utilities/deviceQuery
      /usr/local/cuda-11.4/samples/1_Utilities/deviceQuery/Makefile
      /usr/local/cuda-11.4/samples/1_Utilities/deviceQuery/NsightEclipse.xml
      /usr/local/cuda-11.4/samples/1_Utilities/deviceQuery/deviceQuery.cpp
      ...
      
  1. 编译deviceQuery源代码:

    $ cd /usr/local/cuda-11.4/samples/1_Utilities/deviceQuery
    # make
    
  2. 执行新编译的二进制文件以获取 NVIDIA GPU 的 CUDA 核心数量。 :

    $ ./deviceQuery 
    ./deviceQuery Starting...
    
     CUDA Device Query (Runtime API) version (CUDART static linking)
    
    Detected 1 CUDA Capable device(s)
    
    Device 0: "NVIDIA GeForce RTX 3080"
      CUDA Driver Version / Runtime Version          11.4 / 11.4
      CUDA Capability Major/Minor version number:    8.6
      Total amount of global memory:                 10015 MBytes (10501423104 bytes)
      (068) Multiprocessors, (128) CUDA Cores/MP:    8704 CUDA Cores
      GPU Max Clock rate:                            1800 MHz (1.80 GHz)
      Memory Clock rate:                             9501 Mhz
      Memory Bus Width:                              320-bit
      L2 Cache Size:                                 5242880 bytes
      Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
      Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
      Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
      Total amount of constant memory:               65536 bytes
      Total amount of shared memory per block:       49152 bytes
      Total shared memory per multiprocessor:        102400 bytes
      Total number of registers available per block: 65536
      Warp size:                                     32
      Maximum number of threads per multiprocessor:  1536
      Maximum number of threads per block:           1024
      Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
      Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
      Maximum memory pitch:                          2147483647 bytes
      Texture alignment:                             512 bytes
      Concurrent copy and kernel execution:          Yes with 2 copy engine(s)
      Run time limit on kernels:                     Yes
      Integrated GPU sharing Host Memory:            No
      Support host page-locked memory mapping:       Yes
      Alignment requirement for Surfaces:            Yes
      Device has ECC support:                        Disabled
      Device supports Unified Addressing (UVA):      Yes
      Device supports Managed Memory:                Yes
      Device supports Compute Preemption:            Yes
      Supports Cooperative Kernel Launch:            Yes
      Supports MultiDevice Co-op Kernel Launch:      Yes
      Device PCI Domain ID / Bus ID / location ID:   0 / 1 / 0
      Compute Mode:
         < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
    
    deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.4, CUDA Runtime Version = 11.4, NumDevs = 1
    Result = PASS
    
©2015-2025 Norria support@norria.com